Temperature Dependence of Fusion Kinetics and Fusion Pores in Ca2+-triggered Exocytosis from PC12 Cells
نویسندگان
چکیده
The temperature dependence of Ca(2+)-triggered exocytosis was studied using carbon fiber amperometry to record the release of norepinephrine from PC12 cells. Single-vesicle fusion events were examined at temperatures varying from 12 to 28 degrees C, and with release elicited by depolarization. Measurements were made of the initial and maximum frequencies of exocytotic events, of fusion pore lifetime, flux through the open fusion pore, kiss-and-run versus full-fusion probability, and parameters associated with the shapes of amperometric spikes. The fusion pore open-state flux, and all parameters associated with spike shape, including area, rise time, and decay time, had weak temperature dependences and activation energies in the range expected for bulk diffusion in an aqueous solution. Kiss-and-run events also varied with temperature, with lower temperatures increasing the relative probability of kiss-and-run events by approximately 50%. By contrast, kinetic parameters relating to the frequency of exocytotic events and fusion pore transitions depended much more strongly on temperature, suggesting that these processes entail structural rearrangements of proteins or lipids or both. The weak temperature dependence of spike shape suggests that after the fusion pore has started to expand, structural transitions of membrane components are no longer kinetically limiting. This indicates that the content of a vesicle is expelled completely after fusion pore expansion.
منابع مشابه
Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions
Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synap...
متن کاملRegulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
Synaptotagmin (syt) serves as a Ca(2+) sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca(2+), but thei...
متن کاملCa2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca...
متن کاملCAPS Acts at a Prefusion Step in Dense-Core Vesicle Exocytosis as a PIP2 Binding Protein
CAPS-1 is required for Ca2+-triggered fusion of dense-core vesicles with the plasma membrane, but its site of action and mechanism are unknown. We analyzed the kinetics of Ca2+-triggered exocytosis reconstituted in permeable PC12 cells. CAPS-1 increased the initial rate of Ca2+-triggered vesicle exocytosis by acting at a rate-limiting, Ca2+-dependent prefusion step. CAPS-1 activity depended upo...
متن کاملIdentification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells
The synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+-syt effectors have been identified, but in most cases the functional significance of these i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 131 شماره
صفحات -
تاریخ انتشار 2008